Search results for "Spaceborne experiment"

showing 2 items of 2 documents

In-flight performance of the DAMPE silicon tracker

2018

Abstract DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector , successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mechanisms of cosmic-ray particles, and gamma-ray astronomy . DAMPE consists of four sub-detectors: a plastic scintillator strip detector, a Silicon–Tungsten tracKer–converter (STK), a BGO calorimeter and a neutron detector . The STK is composed of six double layers of single-sided silicon mi…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaGamma rayDark matterFOS: Physical sciencesCosmic rayScintillator01 natural sciences7. Clean energyOptics0103 physical sciencesDark matterNeutron detection010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysInstrumentationNuclear and High Energy PhysicAstroparticle physicsPhysicsCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorGamma raysGamma rayInstrumentation and Detectors (physics.ins-det)Cosmic raySpaceborne experimentSilicon trackerHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsbusinessCosmic rays; Dark matter; Gamma rays; Silicon tracker; Spaceborne experiment; Nuclear and High Energy Physics; Instrumentation
researchProduct

The DAMPE silicon–tungsten tracker

2016

Abstract The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m2. T…

Nuclear and High Energy PhysicsCosmic rays; Dark matter; Silicon tracker; Spaceborne experiment; Nuclear and High Energy Physics; InstrumentationPhysics::Instrumentation and DetectorsCosmic rayParticle detectorsTracking (particle physics)01 natural sciencesParticle detectorOpticscosmic rays0103 physical sciencesDark matterNeutron detection010303 astronomy & astrophysicsInstrumentationAstroparticle physicsPhysicsLarge Hadron ColliderCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleParticle detectors cosmic raysSpaceborne experimentSilicon trackerHigh Energy Physics::Experimentbusiness
researchProduct